How fast is protein hydrophobic collapse?
نویسندگان
چکیده
One of the most recurring questions in protein folding refers to the interplay between formation of secondary structure and hydrophobic collapse. In contrast with secondary structure, it is hard to isolate hydrophobic collapse from other folding events. We have directly measured the dynamics of protein hydrophobic collapse in the absence of competing processes. Collapse was triggered with laser-induced temperature jumps in the acid-denatured form of a simple protein and monitored by fluorescence resonance energy transfer between probes placed at the protein ends. The relaxation time for hydrophobic collapse is only approximately equal to 60 ns at 305 K, even faster than secondary structure formation. At higher temperatures, as the protein becomes increasingly compact by a stronger hydrophobic force, we observe a slowdown of the dynamics of collapse. This dynamic hydrophobic effect is a high-temperature analogue of the dynamic glass transition predicted by theory. Our results indicate that in physiological conditions many proteins will initiate folding by collapsing to an unstructured globule. Local motions will presumably drive the following search for native structure in the collapsed globule.
منابع مشابه
Hydrophobic collapse in multidomain protein folding.
We performed molecular dynamics simulations of the collapse of a two-domain protein, the BphC enzyme, into a globular structure to examine how water molecules mediate hydrophobic collapse of proteins. In the interdomain region, liquid water persists with a density 10 to 15% lower than in the bulk, even at small domain separations. Water depletion and hydrophobic collapse occur on a nanosecond t...
متن کاملSimulating the minimum core for hydrophobic collapse in globular proteins.
To investigate the nature of hydrophobic collapse considered to be the driving force in protein folding, we have simulated aqueous solutions of two model hydrophobic solutes, methane and isobutylene. Using a novel methodology for determining contacts, we can precisely follow hydrophobic aggregation as it proceeds through three stages: dispersed, transition, and collapsed. Theoretical modeling o...
متن کاملFast chain contraction during protein folding: "foldability" and collapse dynamics.
Theory indicates that at least some proteins will undergo a rapid and unimpeded collapse, like a disorganized hydrophobic chain, prior to folding. Yet experiments continue to find signs of an organized, or barrier-limited, collapse in even the fastest (approximately mus) folding proteins. Does the kinetic barrier represent a signature of the equilibrium "foldability" of these molecules? We have...
متن کاملCollapse transition of a hydrophobic self-avoiding random walk in a coarse-grained model solvent.
In order to study solvation effects on protein folding, we analyze the collapse transition of a self-avoiding random walk composed of hydrophobic segments that is embedded in a lattice model of a solvent. As expected, hydrophobic interactions lead to an attractive potential of mean force among chain segments. As a consequence, the random walk in solvent undergoes a collapse transition at a high...
متن کاملPolypeptide chain collapse and protein folding.
Polypeptide chain collapse is an integral component of a protein folding reaction. In this review, experimental characterization of the interplay of polypeptide chain collapse, secondary structure formation, consolidation of the hydrophobic core and the development of tertiary interactions, is scrutinized. In particular, the polypeptide chain collapse reaction is examined in the context of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 21 شماره
صفحات -
تاریخ انتشار 2003